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Abstract – Inference using large datasets is not nearly as straightforward as conventional 
econometric theory suggests when the disturbances are clustered, even with very small 
intra-cluster correlations. The information contained in such a dataset grows much more 
slowly with the sample size than it would if the observations were independent. Moreover, 
inferences become increasingly unreliable as the dataset gets larger. These assertions are 
based on an extensive series of estimations undertaken using a large dataset taken from the 
U.S. Current Population Survey.

Introduction

In econometrics and statistics, it is generally believed that a large sample is 
always better than a small sample drawn in the same way from the same population. 
There are at least two reasons for this belief. When each observation contains 
roughly the same amount of information, a large sample must necessarily contain 
more information than a small one. Thus we would expect to obtain more precise 
estimates from the former than from the latter. Moreover, we would expect a large 
sample to yield more reliable inferences than a small one whenever confidence 
intervals and hypothesis tests are based on asymptotic theory, because the assump-
tions of that theory should be closer to being true.
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In practice, however, large samples may not have the desirable properties that 
we expect. In this paper, I point out that very large samples need to be used with 
care. They do indeed contain more information than small samples. But they may 
not contain nearly as much information as we think they do, and, if we are not 
careful, inferences based on them may actually be less reliable than inferences based 
on small samples.

The fundamental problem is that, in practice, the observations in most samples are 
not entirely independent. Although small levels of dependence have minimal conse-
quences when samples are small, they may have very substantial consequences when 
samples are large. The objective of this paper is to illustrate those consequences.

The theoretical implications of within-sample dependence have been studied 
in detail in Andrews (2005). Unlike that paper, this one is not concerned with 
econometric theory, except at a rather superficial level. Instead, the paper attempts 
to see whether such dependence is actually a problem. To that end, it performs 
various estimations and simulations using a real dataset, which is quite large (more 
than 1.15 million observations), and it obtains some surprising results. Of course, 
because the data are real, we do not really know how they were generated. But it 
seems clear that there is dependence and that it has profound consequences.

1.	 The Data and an Earnings Equation

The data are taken from the Current Population Survey for the United States. 
There are 1,156,597 observations on white men aged 25 to 65 for the years 1979 
through 2015. Each observation is associated with one of 51 states (including the 
District of Columbia). There are 4,068 observations for the smallest state (Hawaii), 
and there are 87,427 observations for the largest state (California).

It is common to estimate an earnings equation using data like these. The 
dependent variable is the logarithm of weekly earnings. The independent variables 
are age, age squared, and four education dummies (high school, high school plus 
two years, college/university, at least one postgraduate degree). Thus the basic 
equation to be estimated is

ygti = β1 +β2Ed2gti +β3Ed3gti +β4Ed4gti +β5Ed5gti

+β6 Agegti +β7 Agegti
2 +

j=2

37

∑γ jYeargti
j +ugti ,

	 (1)

where g indexes states from 1 to 51, t indexes years from 1 to 37, i indexes individuals 
within each year, and Year j

gti
 is a dummy variable that equals 1 whenever t = j. The 

time fixed effects are essential because earnings (which are not adjusted for 
inflation) tend to increase over time and vary over the business cycle.

Suppose we are interested in the value of having a postgraduate degree. The 
percentage increase in earnings relative to simply having a university degree is
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100(exp(ϕ)−1) ≅100ϕ, 	 (2)

where j ≡ b
5
 – b

4
. The OLS estimates of b

5
 and b

4
 are 0.80293 and 0.68498, 

respectively. Using the left-hand side of equation (2) and the delta method, we 
estimate the percentage increase to be 12.519% with a standard error of 0.225. The 
latter is based on a heteroskedasticity-consistent covariance matrix, specifically 
the HC

1
 variant; see MacKinnon and White (1985). This implies that a 95% con-

fidence interval is [12.077, 12.961].

So far, everything looks good. I seem to have obtained a fairly precise estimate 
of the effect on earnings of having a postgraduate degree. However, equation (1) 
is a bit too simple. Because the data have both a time dimension and a cross-section 
one, it makes sense to model the disturbances as

u
gti

 = v
t
 + w

g
 + ε

gti  
.
	

(3)

This is called an error-components model. The v
t
 are time components, and the w

g
 

are cross-section components, which can be treated as either fixed or random.

It has been known for a very long time that ignoring error components can lead 
to severe errors of inference; see Kloek (1981) and Moulton (1986, 1990). The 
conventional approach is to use either a random-effects or a fixed-effects specifi-
cation. The former is a particular type of generalized least squares, and the latter 
involves adding dummy variables for the time and cross-section fixed effects. 
Because the random-effects specification requires the strong assumption that the 
v

t
 and w

i
 are uncorrelated with the regressors, it is safer to use the fixed-effects 

specification when possible. With a large sample like this one, and no regressors 
that would be explained by all the dummies, it is natural to use fixed effects.

Since equation (1) already contains time dummies, using fixed effects simply 
means adding 50 state dummies. When that is done, the OLS estimate of b

5
 – b

4
 

is 0.10965. The implied percentage increase is 11.589% with an HC
1
 standard error 

of 0.222. The resulting 95% confidence interval is [11.155, 12.023]. Adding the 
state dummy variables has caused our estimate of the value of a postgraduate 
degree to drop by almost a full percentage point, or more than four standard errors. 
However, the width of the confidence interval is almost unchanged.

2.	 Clustered Disturbances

Until fairly recently, many applied econometricians would have been quite 
happy with the estimates given at the end of the previous section. If the earnings 
equation (1) and the error-components specification (3) are correct, those estimates 
and their standard errors should be reliable. However, the error-components spec-
ification is actually quite restrictive. Among other things, it forces the effects of 
time trends and the business cycle to be the same for every state. It also implies 
that what remains of the disturbances after the time and state dummies have removed 
their respective error components must be uncorrelated. As we will see shortly, 
this implication is emphatically not true for the model and dataset that I am using.
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In modern applied work with individual data that come from multiple juris-
dictions, it is customary to treat each jurisdiction as a cluster and to allow for 
arbitrary patterns of intra-cluster correlation. The model (1) can be thought of as 
a special case of the linear regression model

y ≡

y1

y2

!
yG

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
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= Xβ+u ≡

X1

X2
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XG
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, 	 (4)

where g indexes states and the gth cluster has N
g
 observations. Here X, y, and u have 

N = ∑G

g = 1
N

g
 rows, X has K columns, and β is a K–vector. In the case of (1) with 

state dummies added, G = 51, K = 83, and N = 1,156,597. If we allow for an arbitrary 
pattern of within-cluster correlation and assume that there is no inter-cluster 
correlation, then the true covariance matrix of the vector u is

(X 'X)−1  
g=1

G

∑Xg
'ΩgXg

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ (X 'X)−1, 	 (5)

where W
g
 = E(ugu'g) is the covariance matrix of the disturbances for the gth cluster.

Even though we do not know, and cannot consistently estimate, the W
g
 matrices, 

it is possible to estimate the covariance matrix (5) consistently when G is large. 
The most popular cluster-robust variance estimator, or CRVE, is

CV1 :
G(N −1)

(G −1)(N −K)
(X 'X)−1  

g=1

G

∑Xg
' ûgûg

' Xg

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟  (X 'X)−1, 	 (6)

where ûg denotes the vector of OLS residuals for cluster g, and û denotes the vector 
of all the OLS residuals. This matrix seems to have been proposed first in Liang 
and Zeger (1986). It can be thought of as a generalization of the HC

1
 heteroske-

dasticity-consistent covariance matrix.

There are also cluster generalizations of the HC
2
 and HC

3
 matrices. The former 

was proposed in Bell and McCaffrey (2002), and there is evidence that it performs 
somewhat better than CV

1
; see MacKinnon (2015) and Imbens and Kolesar (2016). 

Unfortunately, the CV
2
 and CV

3
 covariance matrices involve taking either the 

inverse symmetric square root or the ordinary matrix inverse of N
g
 × N

g 
 matrices 

for g = 1,…,G. These matrices are the ones on the diagonal block of the projection 
matrix MX ≡ I – X(X'X)–1X'. For the dataset I am using, N

g
 can be as large as 87,427, 

for California, so that it would be totally infeasible to use either CV
2
 or CV

3
 1.

1. Simply storing the diagonal block of MX that corresponds to California would require about 
57 GB of memory. Inverting it, or finding its inverse symmetric square root, would require additional 
memory and an enormous amount of CPU time. This would have to be done for all 51 states.



653INFERENCE WITH LARGE CLUSTERED DATASETS

It is easy to compute a test statistic that has the form of a t statistic by dividing 
any parameter estimate by the square root of the appropriate diagonal element of 
(6). It is then customary to compare this test statistic with the t(G – 1) distribution 
rather than the t(N – K) distribution; see Donald and Lang (2007) and Bester, 
Conley et Hansen (2011). Intuitively, we use G – 1 because there are only G terms 
in the summation in (6).

For the earnings equation (1), there are at least two natural ways to form a 
cluster-robust covariance matrix. One is to cluster by state, so that there are 51 
clusters, and the other is to cluster by state-year pair, so that there are 1887 clusters. 
I now re-estimate the standard error of the percentage change in wages associated 
with a postgraduate degree using these two methods.

TABLE 1

Value of a Postgraduate Degree

Case % Gain 
Standard Error 

(% Gain) 95% Lower 95% Upper 

HC
1

11.589 0.222 11.155 12.023
CV

1
(S,Y) 11.589 0.318 10.967 12.212 

CV
1
(S) 11.589 0.584 10.447 12.732 

Note:	 HC
1
 does not cluster at all. CV

1
(S,Y) uses 1887 clusters at the state-year level, and CV

1
(S) uses 

51 clusters at the state level.

Table 1 shows three different standard errors, and the associated confidence 
intervals, for the value of a postgraduate degree. The substantial variation among 
the standard errors provides clear evidence of clustering, both within state-year 
pairs and across years within states. Since clustering at the state-year level imposes 
stronger restrictions on the covariance matrix than clustering at the state level, the 
large drop in the standard error when we move from the latter to the former provides 
convincing evidence that state-year clustering is too restrictive.

The only standard error in Table 1 that might be reliable is the one in the last 
line. It is 2.63 times the standard error in the first line. Increasing the standard 
error by a factor of 2.63 is equivalent to reducing the sample size by a factor of 
2.63 squared. In other words, this sample of 1,156,597 observations, which are 
evidently dependent within state -level clusters, appears to be equivalent to a sample 
of approximately 167,000 independent observations.

It is not hard to see why this sample contains much less information than its 
large size would lead us to expect. Consider the sample mean y– = (1/N)∑N

i = 1
 y

i
. The 

usual formula for the variance of y– is

Var (y) =
1

N
σ2. 	 (7)
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Thus the standard error of y– is proportional to N–1/2.

The standard formula (7) assumes that Var(y
i
) = s2 and Cov(y

i
,y

j
) = 0. A formula 

for the variance of the sample mean that is valid under much weaker assumptions is

Var y( ) =
1

N 2
i=1

N

∑ Var yi( )+ 2
i=1

N

∑
j=i+1

N

∑ Cov yi , yj( )
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟. 	 (8)

Heteroskedasticity is not a serious problem. IfVar(y
i
) = s

i
2, we just need to define 

s2 as N–1 ∑N

i = 1
s

i
2, and the first term on the right-hand side of equation (8) simplifies 

to (7). However, if the Cov(y
i
, y

j
) are not all zero, equation (8) as a whole cannot 

possibly simplify to equation (7).

Now consider the two terms on the right-hand side of equation (8). The first 
term is evidently O(1/N). But the second term is O(1), because it involves two 
summations over N, and it is divided by N2. Thus, even if the Cov(y

i
, y

j
) terms are 

very small, the second term on the right-hand side of equation (8) will eventually 
become larger than the first term2. As N → ∞, under appropriate regularity con-
ditions, the first term will vanish, but the second term will converge to a positive 
constant. Thus, for large enough sample sizes, additional observations will provide 
essentially no additional information.

This disturbing result implies that, for large samples with clustered disturbances 
and a fixed number of clusters, the accuracy of the estimates will grow more slowly 
than N1/2 and will be bounded from above.

FIGURE 1

Inverse of s(ϕ̂) as a Function of M
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2. The result would be different if the
 
Cov(y

i
, y

j
) terms had mean zero, of course, but there 

is no reason to expect that to be the case. On the contrary, we expect the mean to be positive.

N = ∑G

g = 1
N

g
 

y– = (1/N)∑N

i = 1
 y

i
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In order to investigate whether this phenomenon is important for the model 
and data used here, I created multiple subsamples of various sizes, ranging from 
1/64 of the original sample to 1/2 of the original sample. Let M denote the reduced 
sample size, where M ≅ N/m for m = 2, 3, 4, 6, 9, 16, 25, 36, 49, 64. Then the 
subsamples of size M were created by retaining only observations m + j, 2m + j, 
and so on, for a number of values of j ≤ m.

Figure 1 graphs the inverse of the average of the reported standard errors of ϕ̂ 
for three covariance matrix estimators against M, where the horizontal axis is 
proportional to the square root of M. For values of M less than about 30,000, the 
three standard errors are essentially the same. For larger values of M, the het-
eroskedasticity-robust standard errors remain proportional to 1 / M , so the figure 
shows a straight line. However, the two cluster-robust standard errors decline more 
slowly than 1 / M . In consequence, their inverses increase more slowly. For state-
level clustering, the inverse standard errors increase very slowly indeed beyond 
about M = 250,000.

We cannot be at all sure that the state-level clustered standard errors are reliable3, 
but we do know that the other two standard errors are too small. Thus the lowest 
curve in Figure 1 puts an (approximate) upper bound on the rate at which accuracy 
improves with sample size for the parameter j with this dataset. As the theory 
suggests, this rate is very low for large sample sizes.

3.	 Placebo Law Experiments

Although it is important to obtain accurate confidence intervals for economically 
interesting parameters such as j, it is probably even more important to make valid 
inferences about the effects of public policies. Equations similar to (1) are often 
used for this purpose. Suppose that certain jurisdictions (in this case, certain states) 
have implemented a particular policy at various points in time. Then, by adding a 
treatment dummy variable that equals 1 for every state and time period when the 
policy was active to such an equation, economists can estimate the effect of the 
policy on the dependent variable and test whether it was statistically significant.

This sort of empirical exercise is often called “difference in differences” or 
“DiD.” In the simplest case, such as Card and Krueger (1994), there are just two 
jurisdictions and two time periods, and it is not possible to use clustered standard 
errors. However, most DiD regressions involve several jurisdictions (for example, 
51 states) and quite a few time periods, and it is routine to allow for clustering. It 
may not be immediately obvious that adding an appropriate dummy variable to an 
equation like (1) is equivalent to difference in differences, but this is in fact how 
almost all DiD exercises are performed nowadays; see Angrist and Pischke (2008).

3. This is true for two reasons. First, the disturbances may still be correlated across clusters, 
although the bootstrap results in Section 4 suggest that this is not a serious problem. Second, when 
cluster sizes differ a lot, as they do in this case, CV

1
 standard errors tend to be unreliable; see MacKinnon 

and Webb (2017).
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One way to examine the reliability of inference with clustered data is to simulate 
the effect of “placebo laws” in DiD regressions. This ingenious idea was developed 
in Bertrand, Duflo and Mullainathan (2004), which uses a regression similar to 
(1), but for a shorter time period, with data for women instead of men, and with 
different education variables. Instead of generating a new dataset for each replication, 
a placebo-law experiment simply generates a new treatment dummy variable. These 
treatment dummies are entirely artificial, so they should not actually have any 
impact on the dependent variable. MacKinnon and Webb (2017) performs an 
extensive set of placebo-law experiments using essentially the same dataset and 
specification as Bertrand, Duflo and Mullainathan (2004).

In this section, I perform a large number of placebo-law experiments. The 
number of “treated” states, denoted G

1
, varies from 1 to 51. If a state is treated, its 

treatment can start in any year from 1984 to 2010, with equal probability. Thus the 
number of possible treatment dummy variables is 51 × 27 = 1377 for G

1
 = 1,  

51 × 50 × 272/2 = 929,475 for G
1
 = 2, and very much larger numbers for larger values 

of G
1
. In the experiments, I enumerate all possible treatment dummies for G

1
 = 1, 

so that there are 1377 replications. For G
1
 > 1, I choose 40,000 treatment dummies 

at random, with replacement, from the sets of all possible treatment dummies.

FIGURE 2

Rejection Frequencies for Placebo Law Tests, N = 1,156,597
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Figure 2 reports rejection frequencies at the 5% level for t statistics based on 
the HC

1
, CV

1
(S, Y), and CV

1
(S) covariance matrices for all 51 possible values of 

G
1
. Only CV

1
(S) ever yields inferences that are close to being reliable. Tests based 

on heteroskedasticity-robust standard errors always overreject extremely severely. 
Tests based on clustering at the state-year level also always overreject very severely. 
In contrast, tests based on clustering at the state level overreject moderately for  
G

1
 > 15. However, there is severe overrejection for G

1
 ≤ 5 and extreme overrejection 

for G
1
 = 1 and G

1
 = 2.
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The reason for the extreme overrejection by CV
1
(S) when G

1
 is small is explained 

in MacKinnon and Webb (2017). Suppose that d denotes the coefficient on the 
treatment dummy, which must be orthogonal to the residuals for all treated obser-
vations. When the treated observations all belong to very few groups, this means 
that the row and column of the middle factor in expression (6) which correspond 
to d are much too small. In consequence, the CRVE grossly underestimates the 
variance of d̂ when G

1
 is small. This causes the variance of the t statistic to be 

much too large, leading to severe overrejection.

Since they reject so often, the test statistics for d = 0 must have very much 
larger standard deviations than t statistics should have. In fact, for G

1
 = 25, the 

standard deviations are 5.65, 2.78, and 1.10 for statistics based on HC
1
, CV

1
(S, Y), 

and CV
1
(S), respectively. This means that, if the HC

1
 and CV

1
(S, Y) t statistics are 

approximately normally distributed, we will obtain test statistics greater than 5.65 
and 2.78 in absolute value, respectively, more than 30% of the time. Thus, when 
we use the wrong covariance matrix, there is a very substantial probability of 
obtaining by chance a test statistic that appears to be not merely significant, but 
highly significant.

Based on the results of Section 2, in particular the ones in Figure 1, it seems 
plausible that the placebo-law experiments would have yielded different results if 
the sample size had been smaller. In order to investigate this conjecture, I reduced 
the sample size to M ≅ N/m by retaining observations numbered m, 2m, and so on, 
for m = 2, 5, 10, and 20. I then performed the same set of 51 placebo-law experiments 
for each value of M as for the full sample, except that I used 100,000 replications 
instead of 40,000 for m = 5, 10, and 20.

FIGURE 3

Rejection Frequencies for Placebo Law Tests, HC
1
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Figure 3 shows 5% rejection frequencies for HC
1
 t statistics for five sample 

sizes. These decrease steadily and quite dramatically as the sample size drops. 
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When M = N/20 = 57,829, they are never more than 22.4%. In contrast, when  
M = N = 1,156,597, they can be as large as 74.8%. Thus it is evident that failing 
to account for clustered disturbances leads to increasingly serious errors of inference 
as the sample size increases.

FIGURE 4

Rejection Frequencies for Placebo Law Tests, CV
1
(S, Y)
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Figure 4 shows 5% rejection frequencies for CV
1
(S, Y) t statistics for the same 

five sample sizes. These also decrease quite dramatically as the sample size drops, 
but they are not as bad for large sample sizes as the ones in Figure 3. For the very 
smallest sample, with M = 57,829, the CV

1
(S, Y) and HC

1
 rejection frequencies are 

almost indistinguishable. This suggests that the consequences of whatever with-
in-sample correlations clustering at the state-year level picks up must be relatively 
small compared to those of the within-state, cross-year correlations that clustering 
at the state level picks up.

FIGURE 5

Rejection Frequencies for Placebo Law Tests, CV
1
(S)
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Figure 5 shows 5% rejection frequencies for CV
1
(S) t statistics for the same 

five sample sizes. It looks very different from Figures 3 and 4. In this case, sample 
size does not seem to matter. The five curves are almost on top of each other4. This 
suggests that the CV

1
(S) covariance matrices are taking proper account of whatever 

within-sample correlations there may be. Clustering at the state level seems to be 
sufficient.

4.	 The Wild Cluster Bootstrap

Based on Figure 5, it appears that, with large samples like this one, inferences 
based on cluster-robust covariance matrices are likely to be inaccurate, especially 
when the number of treated clusters is small. For most values of G

1
, however, it is 

possible to obtain more accurate inferences by using the wild cluster bootstrap. 
This procedure was proposed by Cameron, Colbach and Miller (2008) and studied 
in detail by MacKinnon and Webb (2017).

For hypothesis testing, the preferred variant of the wild cluster bootstrap uses 
the following DGP to generate the bootstrap data: 

yig
*b = Xig

!β+ !uigvg
*b . 	 (9)

Here Xig is the vector of regressors for observation i within cluster g, ũ
ig
 is the 

residual for that observation based on OLS estimation subject to whatever restric-
tion(s) are to be tested, β̃ is a vector of restricted OLS estimates, and v

g
*b is an 

auxiliary random variable. Notice that the same value of v
g
*b multiplies every residual 

ũ
ig
 in group g. This ensures that the bootstrap DGP mimics the intra-cluster cor-

relations of the residuals. Unless G is very small, it seems to be best to draw v
g
*b  

from the Rademacher distribution, which is equal to 1 and –1 with equal probabilities. 
However, this can cause problems when G is less than about 12; see Webb (2014).

The DGP (9) is used to generate B bootstrap samples which satisfy the null 
hypothesis, say that b

k
 = 0. In order to test that hypothesis, each of these is used to 

calculate a bootstrap test statistic

tk
*b =

β̂k
*b

(CVkk
*b )1/2 , 	 (10)

where β̂k
*b is the estimate of b

k
 from the bth bootstrap sample, and CV

kk
*b is the kth 

diagonal element of a corresponding cluster-robust covariance matrix such as (6). 
The bootstrap P value is then the fraction of the t

k
*b that are more extreme than the 

actual test statistic t
k
. For a symmetric bootstrap test, this would be

4. The curve for M = N/20 is a bit below the others for larger values of G
1
, but this probably 

just reflects sampling variability.
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p̂s
* =

1

B
b=1

B

∑I(| tk
*b |>| t̂k |), 	 (11)

where I(⋅) denotes the indicator function.

FIGURE 6

Rejection Frequencies for Bootstrap Placebo Law Tests
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Figure 6 shows rejection frequencies for wild cluster bootstrap tests at the .01, 
.05, and .10 levels. These are based on 10,000 replications with B = 399. Results 
are shown only for G

1
 = 1, … , 24 and G

1
 = 25, 30, … , 50 because each experiment 

took at least seven days of computer time. The bootstrap tests perform very well, 
although not quite perfectly, for G

1
 ≥ 25. They underreject severely when G

1
 is 

very small, and they overreject moderately for values of G
1
 that are quite small but 

not very small.

MacKinnon and Webb (2017) explains why the bootstrap tests underreject to 
such an extreme extent when G

1
 is very small. An alternative form of the wild 

cluster bootstrap test, which uses unrestricted residuals and parameter estimates 
instead of restricted ones, would have overrejected very severely in the same cases. 
These features of the wild cluster bootstrap are very unfortunate. We cannot learn 
much from a test that almost never rejects (restricted wild cluster bootstrap) or 
from a test that very often rejects (unrestricted wild cluster bootstrap). A number 
of alternative methods have been proposed to handle the situation in which G

1
 is 

very small, but it appears that none of them can safely be relied upon to provide 
reliable inference in all cases; see Conley and Taber (2011) and MacKinnon and 
Webb (2016a, 2016b).
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5.	 “Canadian” Data

Because the CPS dataset I have been using is for the United States, there are 
51 clusters. In many empirical studies, however, the number of clusters is much 
smaller than that. With Canadian data, for example, it would often be natural to 
cluster at the provincial level, which implies that G = 10.

In order to see what happens when there are just ten clusters, I perform an 
additional set of placebo-law experiments using “Canadian” data. The data are not 
actually for Canada. Instead, I take data for ten U.S. states from the dataset I have 
been using. The idea is to choose states for which the sample sizes closely match 
the sample sizes for the Labour Force Survey in Canada. The chosen states, with 
their Canadian counterparts in parentheses, are California (ON), Texas (QC), New 
Jersey (BC), Massachusetts (AB), North Carolina (MB), Minnesota (SK), Maine 
(NS), Oregon (NB), Louisiana (NL), and the District of Columbia (PE). The sample 
has N = 317,984 observations.

The model is the same one used in the previous section, except that there are 
9 “provincial” dummies instead of 50 state dummies. Once again, placebo-law 
treatments are allowed to start in any year between 1984 and 2010. This implies 
that, when G

1
 = 1, there are only 10 × 27 = 270 possible choices for the treatment 

dummy. When G
1
 = 2, there are (10 × 9 × 272)/2 = 32,805. For both these cases, I 

enumerate every possible case. For G
1
 ≥ 3, I pick 100,000 cases at random for the 

methods that do not involve bootstrapping and 25,000 for the wild cluster 
bootstrap.

FIGURE 7

Rejection Frequencies for “Canadian” Placebo Law Tests
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Figure 7 shows rejection frequencies for four different tests at the .05 level of 
the coefficient on the placebo-law dummy variable. When we ignore intra-cluster 
correlation and simply use heteroskedasticity-robust standard errors, rejection 
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frequencies are extremely high, always exceeding 84%. Clustering at the state-year 
level reduces these only modestly, to between 68% and 81%.

Clustering at the state level reduces the rejection frequencies dramatically, 
except when G

1
 is small. For G

1
 ≥ 4, the rejection frequencies are always between 

12.1% and 13.3%. Of course, these would have been substantially higher if I had 
used asymptotic critical values instead of ones based on the t(9) distribution. As 
before, the wild cluster bootstrap performs best. Except for G

1
 = 1, where it never 

rejects, it performs quite well. For 3 ≤ G
1
 ≤ 10, it always rejects between 5.6% and 

7.7% of the time.

Even though genuine Canadian data would undoubtedly yield different results, 
this exercise is interesting. It suggests that the wild cluster bootstrap is not too 
unreliable when the number of clusters is as small as 10, provided the number of 
treated clusters is not extremely small. In contrast, methods that do not involve 
clustering at the jurisdiction level are likely to be highly unreliable, and cluster-robust 
t statistics are not reliable even when clustering at that level.

6.	 Why Are the Residuals Clustered?

There are at least two explanations for the state-level intra-cluster correlations 
that apparently exist in the residuals for regression (1). The first is that these 
correlations arise because of model misspecification, and the second is that they 
arise from the way in which the data are gathered. In this section, I briefly discuss 
these two explanations.

Although equation (1) with the addition of state fixed effects is a very standard 
one, it could be misspecified in many ways. Perhaps there should be a larger set 
of education dummy variables, or perhaps the effect of age on earnings should be 
more complicated than the quadratic specification in the model.

The assumption that there are state and year fixed effects is particularly strong. 
It implies that the impact of time on earnings is the same for every state and that 
the impact of location on earnings is constant across time. A more general speci-
fication would include 51 × 37 – 1 = 1886 state-year dummy variables instead of 
the state and year fixed effects. However, such a model would be useless for 
evaluating policies that vary across states and years but not across individuals, 
because the state-year dummies would explain all the variation in every possible 
treatment variable. A less general but more useful model would be one that incor-
porated state-level time trends as well as state-level fixed effects. It might be of 
interest to investigate such a model.

It seems plausible that misspecification will cause residuals to be correlated 
within states, with weak or nonexistent correlations for observations that are several 
years apart and stronger ones for observations belonging to the same year or nearby 
years. This would explain why clustering at the state-year level works badly but 
clustering at the state level works fairly well.
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The second explanation for state-level intra-cluster correlation of the residuals 
is that the Current Population Survey is a complex survey. It uses specialized sampling 
techniques such as clustering, stratification, multiple stages of selection, and unequal 
probabilities of selection. This complexity is necessary in order to achieve a reasonable 
balance between the cost and statistical accuracy of the survey.

Unfortunately, the complex design of the C.P.S. also ensures that the observations 
are not entirely independent within states. For reasons of cost and feasibility, the 
basic unit of sample selection is the census tract, not the household. Once a tract 
has been selected, it typically contributes a number of households to the surveys 
that are done over several adjacent years. Any sort of dependence within census 
tracts will then lead to residuals that are correlated within states both within and 
across years.

It is sometimes possible to take account of the features of the design of a 
particular survey. See, among others, Fuller (1975), Binder (1983), and Rao and 
Wu (1988). Kolenikov (2010) provides an accessible introduction to this literature 
along with Stata code for bootstrap inference when the survey design is known. 
When the survey design is very complex, however, it would be extremely difficult 
to implement this sort of procedure. When the design is unknown to the investigator, 
it would be impossible. In many cases, the best we can do is to cluster at the 
appropriate level.

It may well be the case that other large datasets display less intra-cluster corre-
lation than this one, or different patterns of it, perhaps because the survey design is 
different or the data do not come from a survey. Data from online retailers or other 
websites probably have different characteristics than data from the Current Population 
Survey. However, it seems unlikely that any large dataset will have observations 
that are entirely independent. Even very low levels of intra-cluster correlation can 
have a substantial effect on inference when the sample size is very large. Therefore, 
in the absence of evidence to the contrary, I conjecture that the results of this paper 
are potentially relevant for most large datasets in econometrics.

Conclusion

This paper has investigated a particular dataset, with more than one million 
observations, taken from the Current Population Survey of the United States. With 
large datasets, even very small correlations of disturbances within clusters can 
cause severe errors of inference. These correlations may arise from misspecification 
(such as omitted variables that vary by cluster) or from the survey design. Including 
fixed effects for time and location does not fully account for them. Not surprisingly, 
the problems associated with clustering seem to be more severe for Canada, with 
10 provinces, than for the United States, with 51 states.

The information content of a sample is not proportional to sample size, but, 
when we use standard errors that are not clustered, we pretend that it is. For very 
large samples, the loss of information from clustered disturbances may be very large.
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Using standard errors clustered at the right level, together with the critical values 
from the t(G – 1) distribution, where G is the number of clusters, helps a lot. Using 
the wild cluster bootstrap helps even more, provided the number of treated clusters 
is not too small; see MacKinnon and Webb (2017). It is particularly important to 
use appropriately clustered standard errors when the sample size is large, because 
the severity of erroneous inference tends to increase with the sample size.

There are special problems associated with regressions that focus on the effects 
of economic policies that vary across jurisdictions and possibly time periods. When 
the number of treated clusters is small, cluster-robust t statistics and bootstrap tests 
based on unrestricted estimates tend to overreject severely, and bootstrap tests 
based on restricted estimates tend to underreject severely.
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